最新国产美女一区二区三区,入禽太深免费观看,中文无码AV一区二区三区,亚洲日韩激情无码一区

竇樂天團隊Nature:鈣鈦礦超晶格新型聚集體兼具單分子/聚集體優勢

更新時間:2024-09-13      點擊次數:619

分子間距是決定有機物質光電性能的關鍵因素。傳統有機發光分子通常以聚集體形式存在或作為單個分子分散在外部基質中。近幾十年來,這些分子在發光二極管、激光器和量子技術等多種應用中引起了廣泛的研究興趣。然而,對于這些分子在聚集和分散狀態之間的行為特性仍存在認知空白。

最新一期Nature 由普渡大學竇樂天團隊提出了一種在二維混合鈣鈦礦超晶格中形成的新型分子聚集相,其分子間距接近平衡距離,將其命名為類單分子聚集體(SMA)。通過構建二維超晶格,有機發射體被維持在相對接近的位置,驚訝的發現,它們在電子上仍然保持獨立,從而實現了接近單分子的光致發光量子產率。此外,鈣鈦礦超晶格中的發射體呈現出強烈的定向排列和密集堆積,類似于聚集體,這導致了顯著的定向發射、增強的輻射復合和高效的激光輸出。
大量研究集中于有機基團的引入如何提高無機層的發光效率、電荷傳輸能力和穩定性,這已在高性能鈣鈦礦電子和光電器件方面取得了重大突破。然而,利用無機子晶格來調控有機分子的分子間相互作用、分子排列和發射特性的研究仍然較為有限。自1990年代末以來,一些研究小組報道了有機半導體-鈣鈦礦超晶格的形成,并確認發射物種可以是有機染料。然而,可以納入分層鈣鈦礦的有機分子發射體系范圍相對有限,它們的PLQY通常較低(通常低于10%)。

研究團隊展示了一種新型分子聚集相_SMA,通過將2D無機子晶格與經過精心設計的有機染料相結合,在接近平衡狀態下實現。在這種混合超晶格中,有機發射體的行為與單個分子非常相似,表現為相似的發射波長和壽命,以及接近1PLQY。理論和實驗研究強調了有機發射體骨架二面角在維持這種單分子行為中的關鍵作用。

竇樂天團隊Nature:鈣鈦礦超晶格新型聚集體兼具單分子/聚集體優勢



新型分子聚集相_SMA研究手法及論證

  1. 材料合成:研究人員合成了一系列的化合物,包括FBTTFBTPPBTPBBTP。這些化合物的合成步驟詳細記錄在文件中,包括原料的混合比例、反應條件和提純方法。

  2. 結構表征:使用核磁共振(NMR)和質譜(HR-MS)來確認產物的結構和純度。這些數據提供了化合物成功合成的證據。

  3. 光學性質分析:通過紫外-可見吸收光譜(UV-vis)、光致發光(PL)和時間分辨光致發光(TRPL)來研究化合物的激射特征分析。研究人員使用自制的遠場微型光致發光系統在常規條件下進行光泵浦激射測量。激射測量使用再生放大器的二次諧波作為激發源,并通過物鏡聚焦激發樣品。激發后的光致發光信號通過長通濾波器收集,并耦合到光柵光譜儀和CCD相機進行記錄。
         
    竇樂天團隊Nature:鈣鈦礦超晶格新型聚集體兼具單分子/聚集體優勢
                                                     
    附圖19 | FBTP 2D SLs薄膜的溫度依賴性PL
         
                                                                   
    a、原始光譜數據。
                                                                   
    b、歸一化光譜數據

               

                 竇樂天團隊Nature:鈣鈦礦超晶格新型聚集體兼具單分子/聚集體優勢
         
         
         

  4. 形態觀察:使用掃描電子顯微鏡(SEM)來觀察分子聚集體和二維過氧化物薄膜的形態。

竇樂天團隊Nature:鈣鈦礦超晶格新型聚集體兼具單分子/聚集體優勢

  1. 理論計算:進行分子動力學模擬(MD),提供了分子在二維鈣鈦礦晶格中的動態行為和相互作用的深入理解,這是設計和開發新型光電材料的基礎。
         
    研究人員使用修改后的MYP模型進行MD仿真,以LAMMPSPLUMED軟件進行計算。這些模擬使用1fs的時間步長和周期性邊界條件,并通過粒子-粒子-粒子-網格(PPPM)算法模擬長程靜電作用,以及截斷在15?Lennard-Jones相互作用。初始結構是從理想化的鈣鈦礦晶格單位元胞構建,并放置在表面的有機陽離子。首先在NVE集合中放松,隨后進行NPT平衡,最后進行NVT模擬以評估骨架二面角的分布、配體的位點能量和分子平面性參數。
         
    另外,密度泛函理論(DFT)計算來理解分子在晶格中的取向和能量信息。

  2. 光穩定性測試研究人員在氬氣手套箱中,使用紫外光固化燈照射二維鈣鈦礦薄膜樣品,評估了不同化合物及其吸收光譜隨時間變化的光穩定性,并與其他已報導的過氧化物進行比較。
         竇樂天團隊Nature:鈣鈦礦超晶格新型聚集體兼具單分子/聚集體優勢

                                                                               
    附圖14 | 光穩定性跟蹤。
                                     
    a,基于不同有機分子的各種2D SL的歸一化吸收光譜。
                                     
    b,在相應的激子峰對UV輻照時間的歸一化吸亮度圖。注意:UV燈的輸出為0.31 W/cm2,距離樣品5厘米,在手套箱中進行輻照,吸收光譜在空氣中測量。

  3. 發光二極管(LED)設備特性:研究了這些化合物在LED設備中的性能。

  4. 單晶X射線衍射數據分析:用于確定化合物的精確結構。



SMA研究出色研究成果剖析

研究人員成功將多種有機發射體融入二維鈣鈦礦晶格中,實現了從藍色到綠色再到紅色的可調發射光譜。研究表明,在鈣鈦礦超晶格中具有適當分子內扭曲的分子發射體能保持單分子特性。值得注意的是,這些分子發射體在鈣鈦礦超晶格中呈現出密集堆積和強烈排列,類似聚集體,導致了定向發射、增強輻射復合速率和低閾值激光行為等發射特性。

通過選擇具有理想性質的有機發射體,研究人員開發了一系列混合型超晶格,為固態照明應用提供了豐富的光電材料選擇。初步研究結果顯示,與傳統聚集體相比,將FBTP分子限制在鈣鈦礦二維超晶格中可將外部量子效率提高50倍以上。

竇樂天團隊Nature:鈣鈦礦超晶格新型聚集體兼具單分子/聚集體優勢

                                                                                                                               補充圖24 | 基于FBTP聚集物和2D SLsLED器件特性。
                            a,具有p-i-n結構的器件結構。
                            b,電流(J-電壓(V-亮度(L)曲線。
                            cEQE與電流密度的曲線圖。d,電流效率與電流密度的曲線圖,顯示FBTP 2D SLs器件的峰值為2.6 cd/A
                            eEL光譜。與FBTP聚集物LED相比,FBTP 2D SLs LEDEL峰值向紅移約10 nm,與它們的PL光譜的移動趨勢一致,表明FBTP 2D SLs LED器件產生了單分子樣式的EL發射。


基本上,LED器件的EQE由內部量子效率(IQE)和光耦出效率(ηOC)確定,其定義為EQE = IQE × ηOC = ηr × γ × ηS/T × ηOCIQE是電荷載流子平衡因子(γ)、能夠輻射衰減的激子比例(ηS/T)和發射層的輻射復合(ηr)的乘積,后者與發射器的PLQY直接相關。在我們的情況下,根據自旋統計學,如FBTP這樣的熒光發射器,ηr = 92.8%,ηS/T = 25%,典型的ηOC約為206,我們可以計算出假設平衡的電荷注入(γ = 1),理論最大EQE4.6%。

推測FBTP器件中的電荷注入平衡尚未優化,因此產生了相對較低的EQE。為了追求高性能LED,我們可以開發一個熱激活延遲熒光(TADF)發射器組合的鈣鈦礦系統,其中TADF發射器被用作發射種類,以克服自旋統計學所施加的限制,無機亞晶格可以被利用來避免TADF發射器的ACQ。通過微調TADF發射器的發射效率并進一步平衡電荷注入,可以基于這個材料平臺實現高效穩定的LED器件,這些器件有望與其他高性能LED競爭。


此外,這種方法還可應用于其他無機基元,如層狀金屬鹵化物-有機異質結構、分子插層層狀二維原子晶體超晶格以及一維或零維有機-無機混合聚類,這些領域仍有待進一步探索。


竇樂天團隊Nature:鈣鈦礦超晶格新型聚集體兼具單分子/聚集體優勢



總之,被限制在鈣鈦礦二維超晶格中的SMA展現了超越傳統有機物質分類(如H聚集體、J聚集體或零聚集體)的特性,代表了一種新型的近平衡態相。盡管表現出類似單分子的特性,但有機分子在二維超晶格中的有序排列和密集堆積導致了顯著的定向發射、超快輻射復合和高效激光輸出,這些特性通常與有序分子聚集體或聚集相關。這種組合為先進的光學和光子學應用開辟了新的研究方向。


貼近研究需求的光焱科技LQ-100X-PL 光致發光與發光量子產率測試系統,除了 PLQY 測量外,還可進行 PL 光譜隨時間變化連續測試,并繪制成 2D 3D 顯示圖-稱為原位時間解析 PL 光譜圖。PL 光譜隨著時間增加的變化,可以波長半寬 (FWHM) 隨之增加,并且產生中心波長 (Peak Lambda) 紅移的現象。分析原位時間解析 PL 光譜圖,對于新型材料如鈣鈦礦的穩定性或亞穩態特性,具有直接的的證據說服力。是材料表征的工具。



文獻參考自Nature 7 Sep._DOI:10.1002/anie.202414128

本文章為Enlitech光焱科技改寫 用于科研學術分享 如有任何侵權  請來信告知






版權所有©2024 光焱科技股份有限公司 All Rights Reserved    備案號:滬ICP備2021022654號-3    sitemap.xml    管理登陸    技術支持:化工儀器網