當前位置:首頁 > 技術文章
研究成就與看點全鈣鈦礦串聯太陽能電池(All-perovskitetandemsolarcells,TSCs)因其突破單接面太陽能電池Shockley-Queisser(S-Q)極限的巨大潛力而備受關注。然而,寬能隙(Wide-bandga...
硅太陽能電池是目前市場上最常見的太陽能電池,具有成熟的制造工藝和大規模生產能力。硅太陽能電池的效率不如CdTe(碲化鎘),但在實驗室規模上已經實現了超過26%的功率轉換效率(PCE);且硅太陽能電池需要較厚的材料來實現足夠的光吸收,這增加了制造成本。而當談到CdTe太陽能電池時,它具有一些明顯的優勢和一些局限性。讓我們來看看這些方面:優勢:高光吸收系數:CdTe的光吸收系數非常高,只需薄薄的CdTe薄膜就能吸收大部分可見光,這有助于提高電池效率。理想的帶隙匹配:CdTe的帶隙...
在大多數的應用中,效率(efficiency)的研究往往都是最被關注的一項關鍵指標,效率代表著投入系統的努力與從系統獲得的收益之間的比率。在電致發光器件中,例如有機、鈣鈦礦或量子點LED,如何提高外部量子效率(Externalquantumefficiency,EQE)通常是驅動材料研究最主要的研究動機。但除了對器件架構和電氣性能進行精心設計外,效率(efficiency)還直接取決于所用發光材料的固有效率,也就是每個分子激發發射的光子之間的比率,是一個很重要的關鍵。而這種效...
摘要鈣鈦礦-硅疊層太陽能電池是下一代光伏技術的有力競爭者,有望取代目前市場上占主導地位的單結硅電池。然而,為了證明在硅電池上添加鈣鈦礦電池的額外成本是合理的,這些器件首先應該表現出足夠高的功率轉換效率(PCE)。瑞士洛桑聯邦理工學院(EPFL)的ChristopheBallif教授團隊在Joule期刊發表了最新研究成果,展示了兩種關鍵技術的協同效應,將平面硅片鈣鈦礦-晶硅疊層太陽能電池的PCE提升至30±1%,并獲得了30.9%的認證高效率。研究人員通過在鈣鈦礦...
光電二極管的能帶結構是理解其工作原理和性能的關鍵部分。能帶架構了在固體材料中電子的能量分布和行為,對于光電二極管的電子載子傳輸和光電轉換過程相當重要。在光電二極管的能帶結構中,一般會涉及到價帶和導帶。價帶是指電子的能量較低的帶,其中填滿了電子。導帶是指電子的能量較高的帶,其中電子可以自由運動。兩者之間的能隙被稱為能帶間隙,是指電子從價帶跳躍到導帶所需的能量。在光電二極管的能帶結構中,當光子照射到半導體材料時,它們會激發價帶中的電子跳躍到導帶中,產生電子-電子對(電子和空穴)。...
摘要可印刷介孔鈣鈦礦太陽能電池(p-MPSCs)由于其簡單且經濟高效的制備工藝,在實現大規模生產方面展現出巨大潛力。然而,在p-MPSCs中,填充在TiO2和ZrO2介孔層中的鈣鈦礦薄膜厚度通常達到3μm,這使得鈣鈦礦的結晶過程比一般的平面薄膜(0.3–0.5μm)更復雜、更具挑戰性。為了克服這一挑戰,華中科技大學的HongweiHan和XinhuiLu研究團隊在AdvancedFunctionalMaterials期刊上發表了一項研究成果,他們使用一種多功能氟化分子作為添加...